Volatility and aging of atmospheric organic aerosol.
نویسندگان
چکیده
Organic-aerosol phase partitioning (volatility) and oxidative aging are inextricably linked in the atmosphere because partitioning largely controls the rates and mechanisms of aging reactions as well as the actual amount of organic aerosol. Here we discuss those linkages, describing the basic theory of partitioning thermodynamics as well as the dynamics that may limit the approach to equilibrium under some conditions. We then discuss oxidative aging in three forms: homogeneous gas-phase oxidation, heterogeneous oxidation via uptake of gas-phase oxidants, and aqueous-phase oxidation. We present general scaling arguments to constrain the relative importance of these processes in the atmosphere, compared to each other and compared to the characteristic residence time of particles in the atmosphere.
منابع مشابه
Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution
Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) emissions from flaming and smoldering hardand soft-wood fires under plume-like conditions. This was done by exposing the dilute emissions from a small wood stove to UV light in a smog chamber and measuring the gasand particle-phase pollutant concentrations with a suite of instruments including a Pro...
متن کاملModeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol
[1] The volatility basis set, a computationally efficient framework for the description of organic aerosol partitioning and chemical aging, is implemented in the Goddard Institute for Space Studies General Circulation Model II′ for a coupled global circulation and chemical transport model to simulate secondary organic aerosol (SOA) formation. The latest smog chamber information about the yields...
متن کاملEquilibration timescale of atmospheric secondary organic aerosol partitioning
[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA ga...
متن کاملIdentification of polymers as major components of atmospheric organic aerosols.
Results from photooxidation of aromatic compounds in a reaction chamber show that a substantial fraction of the organic aerosol mass is composed of polymers. This polymerization results from reactions of carbonyls and their hydrates. After aging for more than 20 hours, about 50% of the particle mass consists of polymers with a molecular mass up to 1000 daltons. This results in a lower volatilit...
متن کاملMeasuring the atmospheric organic aerosol volatility distribution: a theoretical analysis
Organic compounds represent a significant fraction of submicrometer atmospheric aerosol mass. Even if most of these compounds are semi-volatile in atmospheric concentrations, the ambient organic aerosol volatility is quite uncertain. The most common volatility measurement method relies on the use of a thermodenuder (TD). The aerosol passes through a heated tube where its more volatile component...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Topics in current chemistry
دوره 339 شماره
صفحات -
تاریخ انتشار 2014